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Abstract

In this pedagogical review, we introduce and study a three-dimensional topological

field theory called Chern–Simons theory. We begin with the phenomenology of the

U(1) action: we discuss its classical equations of motion, its quantization, and its

observables. We then pass to the nonabelian theory, which we treat in the path integral

and canonical formalisms. We pay special attention to the framing of manifolds and

knots, as well as to the geometrical structure of the quantum theory.
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1 Introduction and Motivation

Introduction. Chern–Simons theory is an exercise in the simplicity, beauty, and weirdness

of topology. It is an archetypical example of a topological field theory, a quantum field theory

where the physical observables are topological invariants of the spacetime in which the theory

lives. In particular, Witten showed in the late 1980s that nonlocal observables in Chern–

Simons (CS) theory called Wilson loops, represented by knots in a 3-dimensional spacetime,

compute certain invariants of those knots that generalize the celebrated Jones polynomial

[1]. As part of this work, which earned him the Fields medal, Witten described how to use

path integrals to give a physical interpretation to such invariants. He also quantized and

solved the theory, and gave an account of its Hilbert space structure. His work highlighted

deep connections between diverse areas of mathematics and physics, and set off a flurry of

activity that greatly enriched and brought together both fields.

Motivation. CS theory appears in 2D conformal field theory, 3D quantum gravity, 4D

gauge theory, condensed matter physics, geometry, topology, and more. The moral here is

that the present review should have something useful in it for everyone.

• In Yang—Mills theory, the theta term responsible for solitons, instantons, monopoles,

and anomalies is accompanied by a topological charge. The quantization of this charge

is analogous to the quantization of CS theory, and many properties of fermions in four

dimensions can be seen as echoes of CS physics in one dimension lower.

• In 2-dimensional conformal field theory (CFT), several surprising connections to CS

theory manifest themselves in subtle ways. The behavior of fermions, the physics

of Wess–Zumino–Witten models, representations of affine Kac–Moody algebras, and

rational CFTs all admit interpretations through the 3-dimensional lens of CS theory.

• In condensed matter theory, topological insulators and the fractional quantum Hall

effect are governed by low-energy effective actions with a CS term. Coupling matter to

CS terms produces a host of novel topological phenomena and phases. In addition, the

physics of Landau levels see application in the formal solution of abelian CS theory.

• In differential geometry and topology, one studies the curvature of various principal

bundles and their (principal) connections using tools like characteristic classes and

Chern–Weil theory. The CS form, its gauge-theoretic properties, and the invariants it

begets undergird the subject and, in turn, inform the study of CS theory itself.
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2 ABELIAN CHERN–SIMONS THEORY

• In knot theory, Witten’s work directly gave a physical and intrinsically 3-dimensional

realization—and generalization—of many topological invariants, among them the Rei-

dmeister and Ray–Singer torsions, the Jones polynomial, and Khovanov homology.

• In quantum gravity, Witten showed that 3-dimensional gravity could be recast as a CS

theory with non-compact gauge group and solved exactly. Together with the advent of

holographic duality, this development placed CS theory at the forefront of our modern

understanding of low-dimensional quantum gravity.

Outline. In this review, we will describe some aspects of Witten’s work. We will essentially

develop CS theory twice; first in the abelian setting (§2) following Dunne [2], and then in

general (§§3–4), following Witten’s landmark paper [1]. The abelian case will serve as a

warm-up: there we will discover key features of CS theory such as anyons, Wilson loops,

linking numbers, its gauge behavior, and some subtleties of its quantization. This will form

the core of our intuitive understanding of CS physics, and the formal development in the

rest of the review will both rely on and flesh out these ideas. In §3, we will emphasize path

integrals and the role played by the framing of knots. Careful consideration of this issue,

which may initially seem like a pedantic nuisance, will allow us to explicitly evaluate the

CS path integral at weak coupling. We will then describe the canonical quantization of the

theory in §4, taking a holomorphic approach based on bundles over various moduli spaces.

Here we will allow ourselves to be slightly more vague in order to get the main points across.

We will largely avoid a discussion of knot polynomials, but we will briefly mention them in

§5, together with a few other odds and ends that bring our discussion to a close.

Conventions. We begin in §2 by working in Lorentzian signature using the mostly minus

convention. Starting with §3, however, however, we will switch to Euclidean signature, and

will stay there for the remainder of the review. We use Greek indices µ, ν, ρ ∈ {0, 1, 2}
for spacetime and middle Latin indices i, j, k ∈ {1, 2} for space. The Einstein summation

convention is employed throughout, except when indicated otherwise. As a warning, the

letter g will variously refer to the metric on a 3-manifold, an element of the gauge group, or

the genus of a Riemann surface; its meaning should be inferred from the local context.

2 Abelian Chern–Simons Theory

The theory of Chern and Simons. Instead of diving headfirst into abstract formalism,

we will begin with a simple but instructive example. Let the 3-dimensional Minkowski space

M = R2,1 represent the universe. The abelian Chern–Simons action is constructed from the

U(1) gauge field Aµ(x), which is analogous to the photon field in electrodynamics:

SCS[A] ≡ k

4π

∫
M

d3x εµνρAµ∂νAρ. (2.1)
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2.1 The Classical Theory 2 ABELIAN CHERN–SIMONS THEORY

Here εµνρ is the totally antisymmetric symbol, k ∈ R is called the Chern–Simons level, and

the factor of 1
4π

is purely conventional. This action is a bit peculiar: it only makes sense

in 3 dimensions, and is of first order in derivatives of A. To gain some intuition about its

behavior, we will explore the classical and quantum consequences of the theory it defines.

We will follow Dunne’s review [2], occasionally drawing on wisdom from Tong [3, 4].

2.1 The Classical Theory

The equations of motion. The equations of motion that follow from the action (2.1) are

δSCS = 0 =⇒ k

4π
εµνρFνρ = 0 =⇒ F = 0, Fµν = ∂µAν − ∂νAµ. (2.2)

This looks rather boring: there are no propagating local degrees of freedom, and the

constant k does not affect the classical physics. We can remedy this situation by adding

matter. For example, a Dirac fermion ψ couples to the CS term by means of a current:

L =
k

4π
εµνρAµ∂νAρ + ψ

(
i/∂ −m

)
ψ − eAµψγµψ = LCS + Lψ + AµJ

µ. (2.3)

In terms of the matter current J , the resulting equations of motion for A are

k

4π
εµνρFνρ =

k

2π
εµνρ∂νAρ = Jµ. (2.4)

Geometrical aside. As we will discuss later, A is actually a connection on a principal

U(1)-bundle over M , and the Lagrangian is a multiple of the Chern–Simons 3-form A∧dA.

The field strength F = dA is the curvature of this connection, so the equation of motion

F = 0 describes flat connections. The presence of a matter current J modifies the equation

of motion to k
4π
?F = J (where ? is the Hodge star), and the matter introduces curvature in

the gauge bundle. Miraculously, this curvature can be measured using a topological invariant

of the spacetime, constructed from the CS form. This fact is the beginning of Chern–Weil

theory, which is (to a mathematician) the correct way to study the CS action [5].

Electric and magnetic fields. The field strength tensor Fµν is populated by the electric

and magnetic fields E and B, which are defined exactly as in the Maxwell theory:

Ei ≡ −∂iA0 − ∂0Ai, B ≡ εij∂iAj. (2.5)

If we write the matter current Jµ ≡ (ρ,J) in terms of the charge and current densities, it is

straightforward to check that the CS equations of motion are given in components by

ρ =
k

2π
B, J i =

k

2π
εijEj. (2.6)
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Evidently B is sourced by electric charges, while E is a consequence of current: this is

the opposite of what happens in electromagnetism. The physical situation is depicted in

Fig. 1 (left): moving charges generate in-plane E fields, while their B fields point in an

imaginary “z” direction. (This picture is actually experimentally accurate in Hall physics.)

Each magnetic flux line is attached to a source charge and pierces the spatial manifold.

Figure 1: Left: the Chern-Simons universe. Right: an anyon!

A single test charge. To gain a more detailed understanding of the physics at work, let

us solve the CS equations (2.6) with sources ρ = δ(2)(x− xa(t)) and J = 0. We will work in

Coulomb gauge, where A0 = 0 = ∂iA
i = ∇ ·A. We plug these sources into (2.6), write out

the E and B fields in terms of Aµ = (0, Ai) as in (2.5), and use standard Green’s function

techniques (specifically, the identity ∇2 log |x| = 2πδ(2)(x)) to obtain the solution to (2.6):

Ai(x, t) =
1

k
εij
xj − xja(t)
|x− xa|2

= −1

k
∂iθ(x− xa(t)), θ(x) ≡ tan−1

(y
x

)
= arg(x). (2.7)

Observe that Ai is a total derivative: it is a pure gauge configuration, and can be brought

to zero by a gauge transformation that adds the total derivative of ω(x) ≡
(

1
k

)
θ(x− xa(t)).

Hence A(x) ≡ 0, which makes E ≡ 0 and B = 0 trivial. But the same gauge transformation

also acts on the matter field ψ—which was responsible for the source charge—by giving it a

nontrivial Aharanov-Bohm phase that depends on its angular position θ and on k:

ω =
1

k
θ =⇒

{
Ai(x) −→ A′(x) = Ai(x) + ∂iω(x) = 0,

ψ(x) −→ ψ′(x) = eiω(x)ψ(x) = eiθ/kψ(x).
(2.8)

Double exchange and anyons. Now consider two charges, as shown in Fig. 1 (right).

One remains stationary, while the other moves around the first. We view this process as a

double exchange: the moving charge trades places with the stationary one twice, once for
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each π rotation. By (2.8), the phase picked up by the moving particle is given by

∆θ = 2π =⇒ ψ(x) −→ exp

(
2πi

k

)
ψ(x) = exp

(
i

∮ θ=2π

θ=0

dxiAi

)
ψ(x) 6= ψ(x). (2.9)

If these particles were bosons or fermions, ψ would return to itself under double exchange.

But (2.9) shows that by tuning k, we can give ψ arbitrary statistics valued in U(1). So

these particles are anyons, because they can have any statistics. (The quantity e2πi/k and

exponentials of closed-loop integrals of A will return frequently throughout this review.)

Comments. The phase picked up by an anyon depends only on k and the topology of

the path it takes. In our example, it winds once around a puncture poked in R2 by the

stationary charge (which has infinite charge there). Thus CS theory comes equipped with a

field-theoretic probe—the anyonic phase—that detects the winding number of a nontrivial

loop in R2 \ {0} ' S1 × R. Another reflection of the same idea is found in the tangling

of the magnetic flux lines in Fig. 1. As we will soon see, it is useful to think of these flux

lines as loops—that is, knots—that close up at infinity. Aside from providing a picture of

Gauß’s law, this perspective reveals that CS theory is really computing the linking number

of these B-field knots. The main point is that CS theory has no local degrees of freedom,

yet it strongly affects far-separated particles and knows about infrared physics [3].

2.2 Path Integral Quantization

Gauge invariance? We have already seen the properties of CS theory under gauge trans-

formations at work in our discussion of anyons. Now we turn to a simpler and more fun-

damental issue: we wish to show that the pure CS action (2.1) is not gauge invariant.

This project gets off to a remarkably poor start: under a gauge transformation of the form

Aµ −→ A′µ = Aµ + ∂µω, a calculation shows that the action changes by a total derivative:

SCS −→ S ′CS = SCS +
k

4π

∫
M

d3x εµνρ∂µ(ω ∂νAρ). (2.10)

If ω vanishes at infinity, then the boundary term is zero and SCS is gauge invariant. Embar-

rassingly, even if ω does not vanish at infinity, the abelian CS action is still gauge invariant by

Gauß’s law, in the absence of magnetic monopoles.1 We will therefore describe the simplest

scenario in which the presence of magnetic flux ruins gauge invariance. In the end, a cleverly

chosen gauge transformation will cause the action to transform as SCS −→ SCS + 2πk. As

we will see, this implies that in the quantum theory, k must be an integer.

1As we will see, this is not the case for the nonabelian theory, which is more fragile: all “large” gauge
transformations cause the action to transform nontrivially, with no need to add monopoles to the theory.
The resulting transformation, SCS −→ SCS + 2πk, is the same as in the abelian theory with monopoles.
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Euclidean acrobatics. The easiest way to break the gauge invariance of SCS is to com-

pactify the spatial manifold to S2, and to pass to Euclidean signature via the Wick rotation

t −→ τ = it, whereby the time axis R becomes the thermal circle S1. Crucially, the CS

action is of first order in time derivatives and transforms to SCS −→ SE
CS = −iSCS. Next, we

choose the gauge transformation ω(τ,x) = 2πτ
β

, which winds once around the thermal circle

and cannot be continuously deformed to the identity map. Finally, we introduce magnetic

flux, i.e. a nonzero integral of B = F12 over S2. To do this, we imagine that S2 ⊂ R3 encloses

a monopole planted at the origin, and we measure the flux piercing its surface. Thinking

fondly of Dirac, we recall that the compactness of U(1) quantizes such fluxes:∫
S2

F12 = 2πn, n ∈ Z. (2.11)

At last, all of our ingredients come together: consider the gauge transformation (2.10) on

M = S2×S1, and substitute the ω given above. An integration by parts reveals the boundary

term to be proportional to the flux integral above; taking n = 1, we find δSCS = 2πk.

The partition function. We appear to have a big problem: SCS is not gauge invariant!

But the quantum theory can still be saved if its partition function Z is gauge invariant.

Combining δSCS = 2πk and −SE
CS = iSCS, the path integral for Z transforms as follows:

Z =

∫
DAe−SE

CS −→
∫
DAei(SCS+2πk) =

∫
DAe2πike−S

E
CS = e2πikZ. (2.12)

Thanks to the fact that SCS—like all topological terms—is imaginary in Euclidean signature,

the path integral is gauge invariant whenever the CS level k is an integer.

Anyons as Wilson loops. Having used path integrals to quantize the CS level, we will

now use them to rediscover anyons from a more formal perspective, following Polyakov [6].

We return to Lorentzian signature and consider the generating functional of pure CS theory,

i.e. its partition function in the presence of a source J :

Z[J ] ≡ 1

Z

∫
DA exp

[
i

∫
M

d3x

(
k

4π
εµνρAµ∂νAρ + AµJ

µ

)]
≡ 1

Z

∫
DAeiS̃CS[A,J ]. (2.13)

To reproduce the physical situation in Fig. 1, consider two particles moving in closed loops

γ1 and γ2 around each other in the plane. Model them by the source J ≡ J1 + J2, with

Jµa ≡
∮
γa

dxµa δ
(3)(x− xa(t)), a ∈ {1, 2}. (2.14)
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Thanks to these “point charge” delta functions, the source term in the action evaluates to∫
M

d3xAµJ
µ =

∮
γ1

dxµ1 Aµ +

∮
γ2

dxµ2 Aµ. (2.15)

We recognize the exponentials of these sources as nonlocal observables called Wilson loops,

defined by Wa ≡ exp
[
i
∮
γa

dxµa Aµ

]
. (These are just the anyonic phass (2.9) in disguise!) In

terms of W1 and W2, the path integral (2.13) becomes the expectation value of their product:

Z[J ] =
1

Z

∫
DA exp

[
i

∮
γ1

dxµ1 Aµ

]
exp

[
i

∮
γ2

dxµ2 Aµ

]
eiSCS[A] =

=
1

Z

∫
DAW1W2 e

iSCS ≡
〈
W1W2

〉
. (2.16)

The linking number. Because the sourced CS action S̃CS[A, J ] is quadratic in A, the

path integral (2.13) is Gaussian. Thus it can be evaluated exactly (up to an irrelevant

normalization constant) by substituting the classical solutionAcl
µ into (2.16). We have already

found this solution in Coulomb gauge, but it is also useful to do it in Lorenz gauge, where2

Acl
µ (x) =

1

2k

∫
M

d3y εµνρ
∂νJρ(y)

|x− y|
=

1

2k

2∑
a=1

∮
γa

dxνa εµνρ
(x− xa)ρ

|x− xa|3
. (2.17)

Here we have substituted J from (2.14) and integrated by parts. Next, we plug this solution

into S̃CS. Being quadratic in A, the sourced action consists of terms with two integrals

over the loops γa; this fact captures the nonlocal nature of the interactions between the two

(localized) particles. The terms that integrate twice over the same loop are divergent: they

describe self-interactions, and are present even if J describes only a single particle.

After substituting (2.17) into (2.16), removing the self-interaction terms (or absorbing

them into the normalization constant), and working through the algebra, we find

Z[J ] =
〈
W1W2

〉
= exp

(
iS̃CS[Acl]

)
= exp

(
i

2k

∮
γ1

dxµ1

∮
γ2

dxν2 εµνρ
(x1 − x2)ρ

|x1 − x2|3

)
. (2.18)

The integral in the exponent is related to a quantity called the Gauß linking integral :

Φ[γ1, γ2] ≡ 1

4π

∮
γ1

dxµ1

∮
γ2

dxν2 εµνρ
(x1 − x2)ρ

|x1 − x2|3
=⇒

〈
W1W2

〉
= exp

(
2πi

k
Φ[γ1, γ2]

)
. (2.19)

Gauß proved that Φ[γ1, γ2] is an integer, and that it is a topological invariant called the

2This is a very subtle step. In Lorenz gauge, the CS equations of motion (2.4) reduce to the standard
equations of (Maxwell) electrostatics in flat 4-dimensional spacetime R3,1. In the notation of (2.17), the
Greek indices µ, ν, ρ are the spatial indices of R3,1, and x, y, etc. are regarded as (spatial) vectors in R3.
The quantity |x− y| therefore instructs one to compute the Euclidean distance between x and y in R3.
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linking number of γ1 and γ2, which counts the number of times that one curve winds around

the other. Taking Φ = 1 gives back the anyonic phase 〈W1W2〉 = e2πi/k obtained in (2.9).

Interpretation. Fig. 1 provides two beautiful realizations of this mathematical story.

First, the Gauß integral is familiar to students of electrodynamics: Φ[γ1, γ2] computes the

magnetic flux passing through a single coil of wire due to a loop of current that passes through

it [7]. Moreover, Φ remains the same when the coil of wire and current loop are exchanged:

Φ[γ1, γ2] = Φ[γ2, γ1]. In CS theory, this is relevant because the magnetic flux lines extending

from their source charges produce flux through each other in proportion to how tangled they

are; this, in turn, detects the anyonic exchange phase of the charges themselves. Second,

observe that the integrand of Φ is the Jacobian of the Gauß map Γ: (x1, x2) 7→ x1−x2
|x1−x2| , which

projects γ1 and γ2 onto the unit sphere S2 ⊂ R3 and identifies their “crossing” points. The

projection of the magnetic flux lines to the plane gives a visual representation of the Gauß

map itself, and its determinant appears even in the classical solutions (2.7) and (2.17). So

one should not be entirely surprised to see the linking integral show up.

The point here is that Wilson loops compute topological invariants of knots which are

also physical observables. As we will soon see, CS theory is really good at doing this.

2.3 Canonical Quantization

Classical treatment. We now turn to the Hamiltonian formalism to see what it can teach

us about the phase space of CS theory. To begin, the CS action (2.1) can be decomposed

into its A0 and Ai pieces and then integrated by parts:

SCS =
k

4π

∫
M

d3x
(
εijAiȦj + 2A0ε

ij∂iAj

)
=

k

2π

∫
M

d3x

(
1

2
εijAiȦj + A0B

)
. (2.20)

The field A0 appears linearly and with no derivatives in SCS. It is a cyclic coordinate, and

is often called a non-dynamical or Lagrange multiplier field. Its equation of motion is

∂SCS

∂A0

= 0 =⇒ k

2π
B =

k

2π
F12 = 0. (2.21)

The condition F12 = 0 is the Gauß law constraint ; it rules out magnetic monopoles.

If we impose it at the level of the action, we can get rid of the second term in (2.20):

SCS =
k

4π

∫
M

d3x εijAiȦj. (2.22)

The Lagrangian εijAiȦj takes the canonical form L = piẋ
i−H, with coordinates xi ∝ εijAj,

momenta pi ∝ Ai, and (vanishing!) Hamiltonian H = 0. Thus Aµ = (0, A1, A2) contains

both the dynamical fields and their conjugate momenta: it describes a point in the phase

space of a theory governed by a vanishing Hamiltonian. Unfortunately, these degrees of
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freedom are redundant, since Aµ transforms nontrivially under gauge transformations.

Topological aside: CS on the torus. In fact, a gauge-invariant parametrization of the

CS phase space is provided by the topologically nontrivial Wilson loops in the theory. There

are no such Wilson loops in pure CS theory on R3 or S3, both of which are simply connected.

So the CS phase space there is actually empty! By contrast, in §2.2 we introduced Wilson

loops by hand via a source term. (One could alternatively argue that the infinite charge

density of the sources introduced defects that changed the global topology.) In any case,

our analysis of sources is equivalent to the study of pure CS theory on a manifold with two

nontrivial homotopy classes of loops; for instance, on the torus M = T 2 × R, which has

π1(M) = π1(T 2) = Z⊕ Z. As shown in Fig. 2, these generators give rise to the two Wilson

loops discussed above. The Wi are both pure phases that take values in U(1), so the classical

phase space for CS theory on the torus is the torus itself: P = U(1)× U(1) = T 2.

Figure 2: An anyon moving on a torus.

Canonical quantization. The canonical quantization of a gauge theory consists of three

steps: (1) impose gauge invariance by fixing a gauge; (2) impose any non-dynamical con-

straints; and (3) promote the canonical Poisson brackets to commutators. The order of these

steps does not affect the quantum theory they produce, but (depending on the theory) choos-

ing the wrong order could lead to insurmountable difficulties. In the present case, we start

from the action (2.20) and choose the gauge A0 = 0, yielding (2.22). This step is identical to

imposing the constraint F12 = 0 in the action, but one must remember that Gauß’s law must

be implemented throughout the phase space. At this stage, the solutions to the equations

of motion are still unconstrained, i.e. they may have F12 = ∂1A2 − ∂2A1 6= 0.

Here we will choose to quantize first, and then impose the constraint: this is a viable

strategy because both the equations of motion and the constraint are linear in A. In §4, we

will pursue the opposite strategy in a setting where the Gauß law is nonlinear. The canonical
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2.3 Canonical Quantization 2 ABELIAN CHERN–SIMONS THEORY

Poisson brackets may be read off from (2.22), and the Ai promoted to operators:

{
Ai(x), Aj(y)

}
=

2π

k
εijδ

(2)(x− y) //
[
Ai(x), Aj(y)

]
=

(
2πi

k

)
εijδ

(2)(x− y). (2.23)

Solving the theory. We now seek to determine the ground state wave functional Ψ0[A(x)].

This is rarely ever possible in field theory, but inA0 = 0 gauge the CS action is quadratic—the

theory is free—so we expect that the ground state will be Gaussian. For reasons motivated

by Landau levels in condensed matter theory3 (see [2]), we adopt complex coordinates:

z = x1 + ix2, A = A(z) =

√
k

2π
(A1 + iA2). (2.24)

We take the following ansatz for the ground state, hoping to determine it explicitly:

Ψ0[A,A] = Ψ[A(z)] exp

(
−1

2

∫
|A|2

)
. (2.25)

Now we must impose F12 = 0 as a functional equation on the Hilbert space. To do so,

we first rewrite the commutator (2.23) in terms of the rescaled fields A and A, which gives

[A(z), A(w)] = δ(z − w). We gain the right to view A as “x” and iA as “p,” so in analogy

to quantum mechanics we write A = − δ
δA

. This makes F12 = ∂1A2 − ∂2A1 a differential

operator that we can reorganize in terms of the (anti-)holomorphic derivatives ∂± = ∂1∓ i∂2:

F12Ψ0[A,A] =

(
∂−

δ

δA
+ ∂+A

)
Ψ0[A,A] = 0 =⇒

(
∂−

δ

δA
+ ∂+A

)
Ψ[A(z)] = 0. (2.26)

The factor e−
1
2

∫
|A|2 drops out, and the resulting ODE for Ψ[A(z)] has a Gaussian solution:

Ψ[A] ∼ exp

[
−1

2

∫
A

(
∂+

∂−

)
A

]
=⇒ Ψ0[A(z)] = exp

(
−1

2

∫ [
A

(
∂+

∂−

)
A+ |A|2

])
. (2.27)

The torus again. Earlier, we studied the classical phase space of pure CS theory on the

torus. Now, with the commutator (2.23) in hand, we are ready to quantize the Wilson loops.

We write Wa = eiwa , with wa =
∮
γa

dxµaAµ. In A0 = 0 gauge, we substitute the canonical

commutator (2.23) and integrate to find [w1, w2] = 2πi
k

. The Baker–Campbell–Hausdorff

formula yields the algebra obeyed by W1 and W2: W1W2 = e2πi/kW2W1. The smallest

nontrivial representation of this algebra has dimension k ∈ Z, so fields in this representation

produce a k-fold ground state degeneracy. On a genus-g surface, there are more Wilson

loops; the correponding algebras are more complicated, and the ground state degeneracy

grows to kg. This degeneracy is one hallmark of a novel, topological phase of matter.

3Alternatively, the A0 = 0 gauge reduces the physics to the plane R2 = C, where complex coordinates
are readily available. The discussion of holomorphic quantization in §4 will also echo and extend this idea.
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2.4 Topological Bells and Whistles 2 ABELIAN CHERN–SIMONS THEORY

2.4 Topological Bells and Whistles

An invariant perspective. Let us see what a coordinate-free formulation of CS theory

can do for us. To begin, the CS action (2.1) can be recast in terms of differential forms:

SCS =
k

4π

∫
M

A ∧ dA, A = Aµdxµ ∈ Ω1(M). (2.28)

The CS 3-form A∧ dA can be defined on any orientable 3-manifold M , without reference to

a metric. Its integral is a topological invariant of M , and in particular it is invariant under

arbitrary coordinate transformations. Just as in gravity, we regard coordinate transforma-

tions as gauge symmetries. One of these is the flow of time itself: the corresponding Noether

charge, the Hamiltonian, must vanish identically, confirming our canonical analysis in §2.3.

Moreover, the independence of SCS from the metric causes the entire stress tensor to vanish:

T µνCS =
2√
|g|
δLCS

δgµν
= 0. (2.29)

These features—diffeomorphism invariance and H = 0—are shared by both CS theory and

gravity, and in fact [8] 3-dimensional gravity has a first-order formulation as a CS theory!

The θ term. One advantage of differential forms is that they clarify how SCS is related to

the theta term in 4D Yang–Mills theory. The main idea [3] is to view M as the boundary of

some 4-manifold X, and then to use Stokes’s theorem and F = dA to write

SXCS =
k

4π

∫
∂X

A ∧ dA =
k

4π

∫
X

F ∧ F =
k

2π

∫
X

d4xFMN F̃MN . (2.30)

Here we put a metric on X and wrote F ∧ F in components using F̃MN = 1
2
εMNABFAB.

(Equivalently, the integral of F ∧ F is the Hodge inner product 〈F, ?F 〉 of 2-forms.) So up

to overall normalization, we find that the CS action is just a theta term.

Spin manifolds. From the 4D viewpoint, SCS depends only on F and is manifestly gauge

invariant. However, it now depends crucially on our choice of “bulk” spacetime X, and this

cannot be. In order for the theory to be well defined, we require that for any two 4-manifolds

X,X ′ with common boundary ∂X = ∂X ′ = M , we have SXCS − SX
′

CS ∈ 2πZ to preserve the

partition function à la (2.12). One slick way to rephrase this criterion is to introduce the

compact 4-manifold Y = (X ∪ X ′)/M , defined by gluing X and X ′ together along their

common boundary M in an orientation-reversing manner. Then our requirement reads

SXCS − SX
′

CS =
k

4π

∫
Y

F ∧ F !
= 2πn, n ∈ Z. (2.31)
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3 FRAMING AND THE PATH INTEGRAL

It turns out that this integrality condition holds only when Y is a spin manifold, which is a

manifold that supports the existence of spinors. For instance, T 4, S4, and S2 × S2 are spin

manifolds, but CP2 is not. Thus we have used geometry to solve a topological problem, and

have learned that 3D CS theories are intimately tied to 4D gauge theories with fermions.

3 Framing and the Path Integral

Apologia for geometry. In the prevous section, we were deliberately näıve and chose

to formulate the theory in an elementary but perhaps less insightful way. Now we will,

in some sense, start over from scratch. Our exposition will be decidedly more formal, but

the geometry developed here will always be guided by the intuition built up in the abelian

theory. All of the phenomena we have encountered will now be fibered, bundled, outfitted

with representations, and laid down abstractly. We will begin by formulating nonabelian

the CS theory in full generality, give its behavior under gauge transformation, and describe

its physical observables (Wilson loops) in terms of knots. We will then pass to the saddle-

point evaluation of its partition function at large k, where the theory is weakly coupled.

To regulate the rather subtle divergences that show up in the process, we will discuss the

framing of oriented 3-manifolds and of knots. In the end, understanding the behavior of the

path integral under change of framing will allow us to complete the calculations.

3.1 The Nonabelian Chern–Simons Action

Geometrical setting. Our story begins with an oriented 3-manifold M representing

spacetime, and a compact, simple Lie group G—the gauge group—with Lie algebra g. As

physicists, we sometimes confuse Lie groups with their Lie algebras. While we will attempt

to distinguish G from g here, we will inevitably be imprecise at times. To formalize the

notion of a gauge transformation, fix a principal G-bundle4 E −→M . Sections of E, called

gauge transformations, are maps g : M −→ E which smoothly assign, to each x ∈M , a point

g(x) = (x, gx) ∈ E, where gx ∈ G. We often abuse notation and write g(x) = gx, thinking of

g as a map M −→ G that produces a spacetime-dependent element of G. When gx lies close

to the identity of G, we consider instead infinitesimal (generators of) gauge transformations,

and we view g(x) as a g-valued zero-form, i.e. a spacetime-dependent Lie algebra generator.

Next, we introduce a principal connection on E. To a physicist,5 this is nothing more

than a one-form on M that takes values in g. We denote the connection by A; in local

coordinates on M , we write A = Aµ(x)dxµ. Each Aµ(x) lies in the Lie algebra, so given

a basis T a of g, we may further decompose Aµ(x) = Aaµ(x)T a, with a ∈ {1, ..., d = dimG}
the gauge index. The object Aµ(x), called the gauge field, generalizes the U(1) gauge field

of §2. Now we can ask a natural question: given that E comes equipped with a G-action,

4For convenience, one may imagine that E = M ×G is the trivial bundle, with M = S3 and G = SU(N).
Our formalism applies more generally, but this is a useful example to return to when the going gets tough.

5For a proper mathematical exposition, including wisdom on associated bundles, see [9] or [10].
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3.1 The Nonabelian Chern–Simons Action 3 FRAMING AND THE PATH INTEGRAL

what happens to the connection under this action? In other words: how does the gauge field

change under gauge transformations? The answer is the following transformation law:

Aµ −→ A′µ = g−1Aµg + g−1∂µg, g = g(x) ∈ E. (3.1)

Covariant derivative and curvature. To obtain the infinitesimal version of this law,

we introduce the gauge covariant derivative D. It acts on g-valued differential forms ω by

Dµω = ∂µω + [Aµ, ω], where [ · , · ] is the Lie bracket. Under a local gauge transformation

ε(x) ∈ Ω0(M, g), the gauge field transforms by a covariant derivative: Aµ −→ Aµ −Dµε.

One says that the ordinary derivative ∂µ is “twisted” by the connection via [Aµ, · ]. We

can examine the amount of twisting introduced by Aµ by measuring the degree to which Dµ

fails to commute with itself, as would be expected if the gauge bundle were flat. Therefore

we define the curvature of the connection, also called the gauge field strength, by

Fµν ≡ [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] ⇐⇒ F = dA+ A ∧ A. (3.2)

If G is abelian (for instance, if G = U(1)), then all commutators vanish. Then Dµ = ∂µ,

and Fµν reduces to the usual Maxwell field strength tensor. However, the nonabelian field

strength contains a term quadratic in A and is generally nonlinear. If F = 0, then we say

that the connection A is flat. We shall soon see, taking inspiration from (2.2), that the space

of flat connections on E determines the classical phase space of pure CS theory.

The Chern–Simons action. Starting from A, we define the Chern–Simons action by

SCS[A] ≡ k

4π

∫
M

Tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
=

=
k

4π

∫
M

d3x εµνρ Tr
(
Aµ(∂νAρ − ∂ρAν) +

2

3
Aµ[Aν , Aρ]

)
. (3.3)

The g-valued 3-form ωCS ≡ A ∧ dA + 2
3
A ∧ A ∧ A is the famous Chern–Simons form,

and by Tr we mean a multiple of the Killing form on g (we will fix the normalization

shortly). To be more concrete, in the adjoint representation of g, ωCS is just a matrix (of

3-forms), and the trace of this matrix is proportional to Tr(ω). The equations of motion

that follow from (3.3), obtained from the variation δSCS in response to a field variation δA,

are δSCS = 0 =⇒ F a
µν = 0. As promised, this describes the space of flat connections on E.

Quantization of the level. Echoing §2.2, we ask whether the CS action (3.3) is invariant

under the gauge transformation (3.1). A brief exercise in integration by parts shows that

δSCS =
k

4π

∫
M

d3x εµνρ
(
∂µ Tr

[
(∂νg)

(
g−1Aρ

)]
+

1

3
Tr
[(
g−1∂µg

)(
g−1∂νg

)(
g−1∂ρg

)])
. (3.4)
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3.1 The Nonabelian Chern–Simons Action 3 FRAMING AND THE PATH INTEGRAL

The first term is the familiar total divergence (2.10) in disguise, and (as in the abelian case)

it vanishes once suitable boundary conditions are imposed. The second term is a novelty of

the nonabelian theory, and is related to an integral called the winding number of g:

w(g) ≡ 1

24π2

∫
M

d3x εµνρ Tr
[(
g−1∂µg

)(
g−1∂νg

)(
g−1∂ρg

)]
= (constant) · n, n ∈ Z. (3.5)

That w(g) is quantized is well known from the study of instantons (see [11] for a proof).

Thus we fix the normalization of Tr so that w(g) is precisely an integer. In terms of w(g),

the CS action changes by a constant under gauge transformations: SCS −→ SCS + 2πkw(g).

Transformations with w(g) = 0 leave SCS invariant, but those with w(g) 6= 0 do not. Those

g(x) with nonzero winding number are called large gauge transformations ; they “wrap”

nontrivially around G. Such transformations cause the classical CS theory to be ill defined,

but (by the argument in §2.2) the quantum theory is still consistent as long as the amplitude

e−S
E
CS = eiSCS is single-valued. This forces 2πkw(g) to be an integer, which requires k ∈ Z.

Topology of gauge transformations. The appearance of w(g) may seem like a miracle,

but it is really a consequence of the topology of G. Recall that gauge transformations are

maps g : M −→ G sending x 7→ g(x). Among these is the identity map x 7→ 1G, and one

may ask whether all gauge transformations are homotopic (i.e. continuously deformable) to

the identity. The answer is no: if (for instance) M = S3, then the set of maps g : S3 −→ G

is classified by the group π3(G), and it is a famous result of Bott [12] that π3(G) = Z
for every compact, simple Lie group G. Hence each map g(x) is classified by an integer

w(g) = [g] ∈ π3(G) = Z called its winding number, and this integer is the integral (3.5).

Wilson loops and knots. Recall that CS theory is topological and admits no local gauge-

invariant observables, as these would violate general covariance. Instead, it computes topo-

logical invariants via Wilson loops, which we construct in the nonabelian theory as follows.

Fix an irreducible representation R of G, and let γ be an oriented, closed curve in M , called

a knot. The connection A, viewed as a 1-form, may be be integrated over γ to yield an

element of g. The (path-ordered) exponential of this integral gives an element of G, well

defined up to conjugacy: this element is the holonomy of the connection around γ. The

Wilson loop WR[γ] is then defined as the trace, in the representation R, of that holonomy:

WR[γ] ≡ TrR

[
P exp

(∮
γ

dxµAµ

)]
. (3.6)

Despite appearances, this definition never requires one to choose a metric on M , so WR[γ]

is a topological invariant of γ. Next, consider r oriented and non-intersecting closed curves

γ1, ..., γr in M . Their disjoint union, L =
⋃r
a=1 γa, is called a link. Choose irreducible
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3.2 The Path Integral at Weak Coupling 3 FRAMING AND THE PATH INTEGRAL

representations Ra of G for each curve γa, and consider the following path integral:

Z(M,L) ≡ 1

Z

∫
DAeiSCS[A]

r∏
a=1

WRa [γa] =

〈
r∏

a=1

WRa [γa]

〉
. (3.7)

Here the normalization factor Z = Z(M, ∅) is computed in the absence of Wilson loops. The

expectation value Z(M,L) will be our main object of study: in fact, Witten showed that

when G = SU(2) and M = S3, Z(S3, L) is precisely the Jones polynomial of the link L.

Comments. Observe that the orientation of any loop γ ⊂ L gives the direction in which

a particle, charged under the corresponding representation R, moves around that loop. Re-

versing the orientation of γ is equivalent to conjugating R, so taking both γ −→ −γ and

R −→ R leaves Z(M,L) invariant. Furthermore, reversing the orientation of all of the loops

in L is equivalent to conjugating all of their representations. This operation, called charge

conjugation, leaves the CS action invariant, and it also leaves Z(M,L) unchanged.

3.2 The Path Integral at Weak Coupling

Stationary phase. We are finally ready to consider the CS path integral in earnest. We

begin in the weakly coupled limit, which corresponds to large k. (Indeed, anyonic phases

and other observables all depend on 1
k
, and become small when k is large.) In the absence

of Wilson loops, the CS path-integrand is rapidly oscillating because SCS itself is large:

Z =

∫
DAeiSCS[A] =

∫
DA exp

[
ik

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)]
. (3.8)

In the weakly coupled limit, Z is dominated by contributions from the points of stationary

phase. Such field configurations A(α) are solutions to the classical equations of motion, i.e.

flat connections. It will be convenient to evaluate SCS[A(α)] by factoring out k to define the

purely topological quantity I[A(α)], called the Chern–Simons invariant of A(α):

I[A(α)] ≡ 1

4π

∫
M

Tr

(
A(α) ∧ dA(α) +

2

3
A(α) ∧ A(α) ∧ A(α)

)
=⇒ SCS[A(α)] = kI[A(α)]. (3.9)

Denoting each saddle-point contribution by µ[A(α)], our first attempt to evaluate Z reads

Z ≈
∑
α

µ[A(α)] ≈
∑
α

eiSCS[A(α)] =
∑
α

eikI[A
(α)]. (3.10)

Here the index α runs over the set M, which is called the moduli space of flat connections.

For the moment we assume that each A(α) is isolated and thatM is finite, but this is false in

general. (As we will discuss in §4,M usually looks like a manifold with some singularities.)

The result of this exercise is that by summing over contributions from all flat connections,
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3.2 The Path Integral at Weak Coupling 3 FRAMING AND THE PATH INTEGRAL

Z computes a topological invariant of M . In the rest of this section, we will consider small

fluctuations about each A(α) and carry out a one-loop version of the calculation above.

Fluctuations. To begin, we expand A = A(α) + a around a “background” flat connection,

substitute this decomposition into (3.8), and change variables in the path integral to the

fluctuation field a. The action itself expands in powers of a, the lowest few terms being

SCS[A] = kI[A(α)] +
k

4π

∫
M

Tr(a ∧Da) = kI[A(α)] +
k

4π

∫
M

d3x εµνρ Tr(aµDνaρ). (3.11)

Here and henceforth, it will be understood that Dµ = ∂µ+[A
(α)
µ , · ] is the covariant derivative

with respect to the background flat connection. For each such flat connection A(α), the

corresponding saddle point contribution µ[A(α)] to the path integral (3.8) is

µ[A(α)] = eikI[A
(α)]

∫
Da exp

[
ik

4π

∫
M

Tr(a ∧Da)

]
≡ eikI[A

(α)]

∫
Da eiS[a], (3.12)

where we have ignored higher-order terms in the action. This path integral is Gaussian,

but to evaluate it we must choose a gauge, and this requires us to put a metric on M .

Nevertheless, we aim for a computation of Z in terms of purely topological invariants of M .

Gauge fixing. We choose the “Lorenz” gauge Dµa
µ = 0. To implement it, we follow the

Faddeev–Popov gauge fixing procedure. The construction introduces into the path integral

an auxiliary Lagrange multiplier field φ, as well as the anticommuting but bosonic ghost

fields c and c. (The fields φ, c, and c are all scalars, but following Witten–Bar-Natan [13],

we view φ as a 3-form.) To calculate the one-loop contribution µ[A(α)], we augment the

action S[a] appearing in (3.12) by adding gauge fixing and ghost terms, and then integrate

over all of the auxiliary fields. Towards the first step, we change the action to

S[a] −→ S[a] + Sgf [φ, a] + iSgh[c, c] ≡
∫
M

d3x Tr

(
k

4π
εµνρaµDνaρ + φDµa

µ + icDµD
µc

)
=

=

∫
M

Tr

(
k

4π
a ∧Da+ φ ? D ? a+ icD ? Dc

)
. (3.13)

The one-loop contribution from each flat connection A(α) is therefore

µ[A(α)] = eikI[A
(α)]

∫
D[a, φ, c, c] exp

[
i

∫
M

Tr

(
k

4π
a ∧Da+ φ ? D ? a+ icD ? Dc

)]
. (3.14)

One-loop determinants. The path integral (3.14) is Gaussian and falls apart into pieces

that can be evaluated in terms of the determinants of certain operators. The ghost fields

decouple from the rest of the action because they appear only in the kinetic term cDµD
µc.
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The Grassmann integral over c and c yields the determinant of the kinetic operator:∫
DcDc exp

[
−
∫
M

Tr
(
cDµD

µc
)]

= det(∆), ∆ ≡ DµD
µ = ?D ? D. (3.15)

The remainder of the path integral can be evaluated in terms of an operator called L−, which

is constructed as follows. Consider first the operator L = ?D+D?, which resembles a Dirac

operator6 in the sense that its square contains the Laplacian (among other curvature terms).

In 3 dimensions, L is self-adjoint and maps forms of even (resp. odd) degree to forms of even

(resp. odd) degree, so we may define its restrictions L+ and L− to forms of even and odd

degree, respectively. We then combine a and φ into an odd-form field H = (a, φ). It can be

shown, after rescaling a and φ, that the non-ghost part of the action (3.13) is precisely the

Hodge inner product 1
2
〈H,L−H〉. Its path integral is therefore a one-loop determinant:

µ0[A(α)] ≡
∫
DφDa exp

[
i

∫
M

Tr

(
k

4π
a ∧Da+ φ ? D ? a

)]
=

=

∫
DH exp

[
i

2

∫
M

Tr
(
H ∧ ?(L−H)

)]
=

1√
det(L−)

. (3.16)

Bringing (3.14) and (3.15–3.16) together, we obtain the one-loop contribution from A(α):

µ[A(α)] = eikI[A
(α)]µ0[A(α)] det(∆) = eikI[A

(α)]

(
det(∆)√
det(L−)

)
. (3.17)

The Ray–Singer torsion. The result (3.17) is admittedly not very explicit. More wor-

ryingly, it depends on the metric of M . In spite of these concerns, it is a marvelous result of

Schwarz [14] that the absolute value of the ratio det(∆)/
√

det(L−) is a topological invariant

called the Ray–Singer torsion Tα of the flat connection A(α). The phase of this ratio, how-

ever, is potentially troublesome. Denoting that phase by θα for the moment, we can write

down the one-loop partition function (3.8) as a sum of its saddle-point contributions:

µ[A(α)] = eikI[A
(α)]
(
Tα e

iθα
)

=⇒ Z =
∑
α

ei(kI[A
(α)] + θα) Tα. (3.18)

Because the Laplacian ∆ is positive and self-adjoint, we actually have det(∆) ∈ R+. Thus

it remains to study the phase of det(L−); as we shall see, this turns out to be tricky.

The phase—I. Let us examine the path integral (3.16) more closely by passing to an

eigenbasis of L−. We call the eigenfunctions χj and their eigenvalues λj, so that L−χj = λjχj.

6This is our second hint—after the comments in §2.4—that the geometry of spinors is close by.
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We expand the field H, introduced above, as H =
∑

j hjχj, and obtain

µ0[A(α)] =

∫
DH exp

[
i

2

∫
M

Tr
(
H ∧ ?(L−H)

)]
=
∏
j

∫ ∞
−∞

dhj√
2π

eiλjh
2
j , (3.19)

where the repreated indices in the exponent are not summed. This change of variables

produces wildly oscillatory integrals which reveal that the phase of det(L−) is divergent. It

can be regularized, however: in one dimension, the analogous integral is∫ ∞
−∞

dx√
2π

eiλx
2

= lim
ε→0

∫ ∞
−∞

dx√
2π

eiλxe−εx
2

=

∣∣∣∣ 1√
λ

∣∣∣∣ exp

(
iπ

4
sign(λ)

)
. (3.20)

Taking the product in (3.19), we obtain both the magnitude and phase of det(L−):

µ0[A(α)] =
∏
j

∣∣∣∣∣ 1√
λj

∣∣∣∣∣ exp

(
iπ

4
sign(λj)

)
=

∣∣∣∣∣ 1√
det(L−)

∣∣∣∣∣ exp

(
iπ

4

∑
j

sign(λj)

)
. (3.21)

Hence the phase of the determinant depends on the signature of L−, the difference between

its number of its positive eigenvalues and its number of negative eigenvalues. This number

is ill defined, but it can be regularized (again!) by introducing the eta invariant [15, 16, 17]:

µ0[A(α)] =
1√

det(L−)
=

∣∣∣∣∣ 1√
det(L−)

∣∣∣∣∣eiπη[A(α)]/2, η[A(α)] ≡ 1

2
lim
s→0

∑
λ 6=0

sign(λ)

|λ|s
. (3.22)

The phase—II. Towards an explicit computation of the phase, the Atiyah–Patodi–Singer

index theorem gives a relation between η[A(α)] and other topological data of the gauge bundle:

1

2

(
η[A(α)]− η[0]

)
=
c2(G)

2π
I[A(α)] ⇐⇒ θα =

π

2
η[A(α)] =

c2(G)

2
I[A(α)] +

π

2
η[0]. (3.23)

Here, I[A(α)] is the CS invariant defined in (3.9), c2(G) is the quadratic Casimir of the

gauge group, and the mysterious term η[0] is the eta invariant of the trivial connection.

Putting (3.23) together with (3.18) yields the one-loop partition function:

Z = eiπη[0]/2
∑
α

exp

[
i
(
k +

c2(G)

2

)
I[A(α)]

]
Tα. (3.24)

3.3 Regularization and Framing

Summary so far. We began in §3.1 by setting up the geometry of the gauge bundle,

introducing the CS action (3.3), and discussing its quantization via large gauge transforma-

tions. In §3.2, we wrote down the partition function (3.8) of pure CS theory and attempted

its saddle-point evaluation by expanding the action at large k around a flat connection, as
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in (3.12). We then chose a metric, fixed the gauge, introduced ghosts, and evaluated the

resulting Gaussian path integral in terms of the operators whose quadratic forms made up

the gauge-fixed action. The result, (3.17), was a ratio of determinants whose absolute value

Tα is a topological invariant. The phase was more subtle, and was eventually expressed in

terms of the eta invariant (3.22). Unfortunately, η[A(α)] is not a topological invariant, since

it depends on L− and hence on the metric of M . The index theorem gave us (3.24) and

improved the situation by making η[0] the only part of Z that is not a topological invariant.

Towards η[0], the trivial connection A(α) = 0 reduces the covariant derivative to the

ordinary one: Dµ = ∂µ. Consequently, L− falls apart into the direct sum of d = dimG

identical copies of the “gravitational” operator D− = (? d + d ?)odd, so named because it

depends only on the metric of M . We may therefore write η[0] = dηg, where ηg = ηg is

the eta invariant of D− at A(α) = 0. We would then hope to express the global phase

Λ ≡ exp
(
idπ
2
ηg
)

in (3.24) as a topological invariant, but here we run out of luck.

Philosophy of failure. The crucial thing to appreciate is that although we started with a

topological quantity, there was no way to regularize or evaluate it without introducing a met-

ric. To the extent that general covariance is a “classical” symmetry of the CS action broken

by any regularization of the quantum theory, we expect the theory to have an anomaly—and

sure enough, we will soon see one called the framing anomaly. More immediately, however,

we must tend to the fact that our final answer depends on the metric. This should not be

surprising: the gauge fixing terms we added to the action in (3.13) were explicitly coupled

to the metric, so our calculation can only be correct up to the effects of such “gravitational”

terms in the action. Perhaps the surprising thing is that we almost managed to completely

eliminate such effects altogether, except for the global phase factor Λ = exp
(
idπ
2
ηg
)
.

To remedy the situation, we should add a compensating term to the action that precisely

cancels the gravitational effects we introduced. This prescription is consistent with the ideas

of renormalization: any two regularizations must differ by a local counterterm in the action.

In our case, we require a counterterm C[g] constructed only from the metric g on M , so

that adding iC[g] to the action will have no effect on Z other than to add C[g] to the phase
dπ
2
ηg. We will agree that C[g] “precisely cancels” the gravitational effects of ηg if the sum

dπ
2
ηg + C[g] is a topological invariant, since then it no longer depends on the metric.

The gravitational counterterm. It may be difficult to see what to add to the action.

One natural guess is the gravitational Chern–Simons action, which is modeled on SCS, but

uses the spin connection ω on M in place of a principal G-connection A:

I[g] ≡ 1

4π

∫
M

Tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
. (3.25)

Crudely speaking, one may think of ω as the Levi–Civita connection on M . Actually, it is

both more illuminating and more precise to regard ω as the Levi–Civita connection on the
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spinor bundle of M . This construction immediately gets more concrete due to the happy 3-

dimensional fact that Spin(3), the universal cover of SO(3), is isomorphic to SU(2). Thus ω is

just an SU(2) gauge field, and its precise field configuration—and hence the value of I[g]—is

uniquely fixed by the “gravitational” requirement that it be the Levi–Civita connection.

The term I[g] is the crucial ingredient we need. By the Atiyah–Singer index theorem

(again!), the combination Ξ ≡ 1
2
ηg + 1

12
I[g]
2π

of gravitational terms is a topological invariant.

In accordance with the philosophy expounded above, we should replace ηg
2

with Ξ in the

global phase Λ of the partition function. In other words, we should add the counterterm

C[g] = πd
12

I[g]
2π

= dI[g]
24

to the action, so that the problematic phase in (3.24) becomes

Λ = exp

(
iπ

2
η[0]

)
= exp

(
idπ

2
ηg

)
// exp

(
iπd

[
ηg
2

+
1

12

I[g]

2π

])
= exp(iπdΞ). (3.26)

At long last, the one-loop partition function is rendered completely topological:

Z = exp

(
iπd

[
ηg
2

+
I[g]

24π

])∑
α

exp

[
i

(
k +

c2(G)

2

)
I[A(α)]

]
Tα. (3.27)

Framing. The discussion above elided a crucial but technical point: I[g] suffers from a

geometrical ambiguity analogous to the failure of gauge invariance in SCS. It is well known

[18] that every oriented 3-manifold admits a trivialization of its tangent bundle: such a

trivialization is called a framing. It is also well known [19] that every oriented 3-manifold

admits a spin structure. (This assures us that the characterization of ω after (3.25) makes

sense.) In fact, every choice of framing uniquely determines a spin structure; this choice

influences the geometry of the spinor bundle and therefore affects its Levi–Civita connection.

There is no canonical choice of framing for a generic 3-manifold, so the value of I[g] is ill

defined unless a framing is chosen. In other words: relative to one choice of spin structure,

Levi–Civita connections on other spinor bundles overM will look as though they have torsion,

but there is no canonical way to tell which of these connections is “truly” torsion-free.

In the absence of an unambiguous value for I[g], the best we can do is to describe what

happens to I[g], and hence to Z, under a change of framing. In fact, the value of I[g] differs

between any two framings by 2π times an integer s that measures the number of relative

“twists” between them. (The transformation law I[g] −→ I[g] + 2πs is directly analogous

to the behavior SCS −→ SCS + 2πkw of the CS action under large gauge transformations.)

Upon shifting the framing by s units, (3.27) shows that the partition function changes by

I[g] −→ I[g] + 2πs =⇒ Z −→ exp

(
2πisd

24

)
Z. (3.28)
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3.4 Wilson Loops and Commentary

An abelian example. The incorporation of Wilson loops in nonabelian CS theory, i.e.

the calculation of Z(M,L) via (3.7), is difficult, so we will postpone it. Instead, we revisit

the abelian case discussed in §2.2, with M = S3, G = U(1), and CS action (2.1). Choose

r non-intersecting, oriented, closed curves γ1, ..., γr whose union form a link L, and integers

n1, ..., nr that play the role of irreducible representations of U(1). Consider the Wilson link

W [L] ≡
r∏

a=1

Wa[γa] =
r∏

a=1

exp

(
na

∮
γa

dxµa Aµ

)
. (3.29)

(The path ordering symbol in (3.6) is not necessary here because the theory is abelian.)

Generalizing our results in §2.2, the expectation value of W [L] may be written

〈
W [L]

〉
≡ 1

Z

∫
DAW [L] eiSCS[A] = exp

(
i

2k

r∑
a,b=1

nanb

∮
γa

dxµa

∮
γb

dxνb εµνρ
(xa − xb)ρ

|xa − xb|3

)
=

= exp

(
2πi

k

r∑
a,b=1

nanb Φ[γa, γb]

)
, (3.30)

where xµa and xνb are local coordinates for a region of S3 containing L, and where Φ[γa, γb] is

the usual Gauß linking number of γa and γb, defined by (2.19).

The self-linking number. If a = b, the self-linking number Φs[γa] ≡ Φ[γa, γa] diverges.

We resolved this issue in §2.2 by simply ignoring such self-interaction terms. But there is

a much more elegant way of regulating these infinities. Along each knot γ ⊂ L, we choose

a vector field everywhere orthogonal to γ. Such a choice is called a framing of γ, echoing

the framing of 3-manifolds we developed7 in §3.3. We then “thicken” γ into a ribbon by

extending or displacing γ slightly along this vector field, as shown in Fig. 3. The ribbon is

bounded by γ and a new knot γ′, and we define the self-linking number Φs[γ] to be Φ[γ, γ′].

Change of framing. This prescription clearly depends on the topological class of the

vector field used to extend γ, and it generically makes Φs[γ] nonzero. In S3, every knot

actually has a canonical framing obtained by requiring its self-linking number to vanish, and

this is the one we chose in §2.2. But this is not so in general: knots in arbitrary 3-manifolds

do not admit a canonical choice of framing. Just as we did for Z, we will content ourselves

here with a law that governs how Φs[γ] and 〈W [L]〉 transform under a change of framing.

Fortunately, the index theorem guarantees that the self-linking number differs between two

different framings by an integer number t of twists, as shown in Fig. 3. When the framing

7This notion of framing is equivalent to a choice of trivialization for the tangent bundle Tγ of the knot,
and therefore defines a framing (in our original sense of the word) of γ as a 1-manifold.
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of a knot γa is shifted by t units, (3.30) tells us that 〈W [L]〉 transforms by

Φs[γa] −→ Φs[γa] + t =⇒
〈
W [L]

〉
−→ exp

(
2πitn2

a

k

)〈
W [L]

〉
. (3.31)

Mathematically, (3.28) and (3.31) say that Z and 〈W [L]〉 are topological invariants of framed

manifolds. Physically, they describe a framing anomaly, due to the gravitational coupling.

Figure 3: Left: a choice of framing for the trefoil knot is an orthogonal vector field that
“frames” it [20]. Right: a change of framing can be viewed as a twist of γ′ relative to γ [1].

Examples and caveats. Let us close with an assortment of comments, examples, and

warnings that we failed to give in the course of developing the theory. We begin with some

explicit partition functions. For M = S2 × S1, one has Z = 1 for any gauge group G. For

M = S3, the gauge group G = U(1) makes available the result (3.30); taking the empty link,

the phase is zero and so Z = 1. For M = S3 and nonabelian G, the only flat connection

is the trivial one, A(α) = 0. One might think to apply (3.27), but (as we discuss below) it

actually breaks down here. The actual result and its large-k scaling for G = SU(2) are

Z =

√
2

k + 2
sin

(
π

k + 2

)
∼ k−3/2. (3.32)

Notice that c2(SU(2)) = 4, so the factor k+ 2 that appears here is really the “renormalized”

CS level k + c2(G)
2

at one loop. Separately, it is somewhat amusing to note that the gauge

group G = SU(5) has d = dimG = 24, so that when this is substituted into (3.28), the

dependence of Z on the framing of M disappears completely.

Finally, we note an important caveat in §3.2: the determinants of the operators ∆ and

L− must be nonzero in order for any of the consequences of (3.17) to make sense. In

fact, these operators are nonsingular if and only if A(α) trivializes all of the the de Rham

cohomology groups Hn
dR(M,E). These objects arise from the observation that on a flat

bundle, [Dµ, Dν ] = Fµν = 0 implies that D ◦D = 0. The covariant derivative is therefore a

coboundary operator twisted by the flat connection A(α), and we define the cohomology by

Hn
dR(M,E) =

(
kerD

∣∣
Ωn(M,E)

)/(
imD

∣∣
Ωn−1(M,E)

)
. The easiest way to make our results fail
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is to find a situation where H0(M,E) 6= 0. If this happens, the operators ∆ and L− will

have zero eigenvalues, so the auxiliary fields φ, c, and c will have zero modes and the gauge

fixing becomes more complicated. This is what happens when M = S3, where the unique

flat connection is trivial. To wit, we find that H0(M,E) = ker d
∣∣
C∞(M,E)

= E 6= 0 is the

set of constant maps M −→ E. So despite its “triviality,” the trivial connection causes big

problems. Finally, we observe that if H1
dR(M,E) 6= 0, then flat connections are not isolated

or finite in number, but instead lie in a larger moduli space of flat connections.

4 Hilbert Space Structure

Into the fray. In this section, we turn away from path integrals and take up the ambitious

goal of solving Chern–Simons theory exactly. To “solve” the theory will mean to describe,

as precisely as possible, its Hilbert space and the structure of its physical observables. Our

strategy, following Witten’s insight [1], will be to (1) cut the 3-manifold M on which the

theory lives into simpler pieces, (2) solve the theory on each piece by canonical quantization,

(3) include Wilson loops, and then (4) glue the pieces back together. The rest of the present

section will be devoted to fleshing out some of the details of this plan. The ideas developed

in §2.3 should be kept close at hand throughout the rather abstract discussion that follows.

Nevertheless, we will be rather impressionistic, and will leave out some technical details.

Figure 4: Left: a 3-manifold M containing a Wilson loop W , cut along a Riemann surface Σ.
Right: a collar neighborhood of the cut. The surface Σ has two marked points representing
charges, where the outgoing and ingoing parts of W insert representations R and R [1].

Synopsis. Every oriented 3-manifold may be cut into two disjoint pieces along a 2D surface

Σ, which—as an oriented 2-manifold—may be given a complex structure and thus becomes a

Riemann surface. (The fact that Σ does not have a canonical complex structure will become

important to us later.) Near the cut, M has the topology Σ×R; the picture is that of slicing

a block of swiss cheese. We thus consider CS theory on manifolds of this topology, and by

treating R as the time direction, we will obtain a Hilbert space HΣ associated to Σ. One

surprise we will meet along the way is that the Gauß law constraint, which is now nonlinear,
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renders HΣ finite-dimensional. Morally speaking, this happens because HΣ is obtained from

the classical phase space of the theory, which is parametrized by finitely many phases due

to the nontrivial Wilson loops allowed by the topology of Σ. We can also include sources,

as before, by putting knots in M . Some of these knots may pass through Σ, producing the

picture of Fig. 4. In this case, Σ comes to us with “marked” points pi where it is pierced, each

attached to the representation Ri given to the corresponding Wilson loop. The construction

of HΣ from this data is more involved, so we will only sketch how it is done.

4.1 Holomorphic Quantization

The canonical formalism. We begin with the CS action (3.3) on M = Σ × R. In the

gauge A0 = 0, our results are almost identical to what we found in §2.3, the only difference

being the presence of group-theoretic indices. The action reduces to

SCS =
k

4π

∫
R

dt

∫
Σ

d2x εij Tr
(
AiȦj

)
. (4.1)

As before, the Hamiltonian vanishes, the “coordinates” are Ai, and their “momenta” are

εijAj. So as before, the gauge field is canonically conjugate to itself. The canonical Poisson

brackets obeyed by the spatial components of Aµ = (0, Aai T
a) are

{
Aai (x), Abj(y)

}
=

2π

k
εijδ

abδ(2)(x− y). (4.2)

This relation defines a classical phase space, but it is too large: the classical CS theory is

also constrained by the nonabelian Gauß law, which restricts us to the flat connections:

εijF a
ij = 0 ⇐⇒ F = 0. (4.3)

Plan of attack. Since F = dA + A ∧ A is quadratic in the gauge field, the constraint

(4.3) re-introduces nonlinearity into the eminently free theory defined by (4.1–4.2). It would

be virtually impossible to follow the the “quantize, then constrain” procedure laid out in

§2.3: implementing (4.3) at the level of wave functionals, as in (2.26), would lead to a badly

nonlinear PDE constraining the physically allowed states. Instead, we will “constrain, then

quantize” by implementing (4.3) at the classical level. The resulting phase spaceM is called

the moduli space of flat connections ; it consists of gauge equivalence classes of flat principal

G-connections A on the gauge bundle E −→ Σ. It was studied by Atiyah and Bott [21],

who showed that M is a compact manifold-like object with mild singularities, inherits a

symplectic structure from the unconstrained phase space of (4.2), and has (real) dimension

d(2g − 2), where d = dimG and g is the genus of Σ. Now, since M is compact, it has finite

(symplectic) volume. In accordance with Heisenberg’s uncertainty principle, quantization

typically produces one quantum degree of freedom per unit volume in phase space. So we

see that quantization of M should yield a finite-dimensional Hilbert space.
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Geometric quantization. In quantum mechanics [22], one usually begins with a phase

space P parametrized by coordinates qi and momenta pi, and then defines the Hilbert space

H as the space of complex-valued, square-integrable functions of the qi. The salient features

of this construction are that it requires a decomposition of the phase space variables into

coordinates and momenta, and that it “chooses” half of these coordinates. (Such a choice

is called a polarization.) We can recast this construction in geometric terms: one attaches

at every point of P a copy of the complex plane, and then defines a wave function ψ as any

section of the resulting C-bundle (We have not yet specified the bundle, but we will do so

shortly.) that obeys two conditions. First, ψ is square-integrable; and second, it depends

only on the qi and not on the pi, so that ∂ψ
∂pi

= 0. This viewpoint is admittedly a bit awkward

to spell out—but purposefully so, as we shall now watch it get dramatically more powerful.

Kähler quantization. A Kähler manifold is a manifold that is at once symplectic, com-

plex, and Riemannian, with all three structures compatible.8 If the phase space P happens

to be Kähler, then we can coordinatize it by new variables zi = qi + ipi and zi = qi − ipi.
The C-bundle above becomes a complex line bundle L over P , and we can choose our wave

functions by admitting those sections ψ : P −→ L which depend on the zi but not on zi.

Thus we define the Hilbert space to be the space of holomorphic sections of L. Such sections

have ∂ψ
∂zi

= 0, so they are annihilated by the ∂ operator on L. As for “square integrabil-

ity,” one needs an inner product. This is obtained by endowing L with a hermitian metric,

which allows one to compute inner products like 〈ψ|ψ〉. The hermitian metric determines a

unique connection (in fact, the Levi–Civita connection!) on L, called the Chern connection

A, which is compatible with the Kähler structure on P in two ways. First, the covariant

derivative D built from A is identical to the ∂ operator, so physical wave functions are co-

variantly constant: Dψ = 0. And second, the curvature Ω of A satisfies Ω = −iω, where ω

is (!) the symplectic form on P . And now, a miracle: the first Chern class of a line bundle,

c1(L) = [ i
2π

Ω], is a topological invariant that characterizes L uniquely. Thus as soon as the

symplectic structure on P is given, the necessary line bundle is uniquely determined.

So, to summarize: if P is a Kähler manifold with symplectic form ω, consider the line

bundle L with first Chern class c1(L) = [ ω
2π

], henceforth called the prequantum line bundle

of P . Endow L with the Chern connection, which determines a hermitian inner product on

L and has curvature Ω = −iω. Then the Hilbert space H associated to P is the space of

holomorphic sections of L; and if P is compact, then H will be finite-dimensional.

The Hilbert space. In the case at hand, the phase space P =M does not carry a natural

complex or Kähler structure. However, it can be shown that upon choosing a complex

structure J on the surface Σ, the moduli space M =MJ also inherits complex and Kähler

structures. Roughly, this proceeds by complexifying the gauge group G to GC, and then

8It is, in some sense, a phase space (since it is symplectic) that looks like a curvy Hilbert space (since it
is complex and has a tangent-space inner product). More prosaically, a Kähler manifold is a fancy donut.
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(echoing the holomorphic quantization above) choosing the “slice” through GC that forces

connections on the complexified gauge bundle to vary holomorphically. Once this choice is

made, the symplectic form ω inherited by MJ from (4.2) defines the unique line bundle L

with first Chern class c1(L) = [ ω
2π

]. The Chern connection on L is then used to construct a

covariant derivative D that agrees with the ∂ operator on L, and this latter operator defines

the holomorphic sections which—at long last—associate to Σ a Hilbert space H(J)
Σ . This

discussion is admittedly rather abstract, but we will see some examples in §4.3.

A slightly more concrete description of L is available when G = SU(N) and k = 1: the

basic idea is to construct L from a family of operators arising from the ∂ operator on Σ itself.

Recall that in A0 = 0 gauge, the gauge bundle E −→M may be considered as a bundle over

Σ. Once we fix a complex structure on Σ, complexify the gauge group to GC, and choose a

representation of GC (say, the fundamental), E attains the structure of a holomorphic vector

bundle over Σ. Each point inMJ is a flat connection on E, and the covariant derivative built

from this connection retains some information about the complex structure on E. In fact,

we can use it to “twist” the ∂ operator that already lives on Σ thanks to its own complex

structure. In this way, MJ parametrizes a family of twisted ∂ operators on E.

The determinant bundle. There is now a nice way to associate a (complex) line to each

twisted ∂ operator—that is, to each point of MJ—and thereby obtain the prequantum line

bundle. The construction was introduced by Quillen [23] and essentially proceeds by “taking

the determinant” of ∂. One thinks of the determinant as a stand-in for the operation of

taking the top exterior power of E, which gives a one-dimensional space regarded as a line.

More precisely, one attaches to each ∂ operator the line

L∂ =
∧n(

ker ∂
)∗ ⊗∧n(

coker ∂
)
. (4.4)

Finally, gluing these lines together defines the determinant line bundle L over MJ .

It can be checked that, when k = 1, this is the correct line bundle. The Dirac determinant

provides a hermitian metric on L and determines the Chern connection, which enables one

to compute its curvature and first Chern class. This was done by Quillen, who showed that

they both agree with the symplectic form (4.2) via c1(L) = [ ω
2π

] and Ω = −iω. When k 6= 1,

the determinant bundle L gets the symplectic form wrong by a factor of k; in general, the

correct line bundle at level k is L⊗k. And when G 6= SU(N), then it is some (potentially

large) tensor power of L⊗k that appears instead, thanks to the Kodaira embedding theorem.

The modular functor. Let us turn to what is by now a recurring theme: there is no

canonical choice of complex structure on Σ. In fact, such complex structures J vary within

their own moduli space of Riemann surfaces, which we denoteMΣ. Now, on physical grounds

the Hilbert space H(J)
Σ constructed above cannot depend on the complex structure J . This is

because H(J)
Σ is the solution to a problem whose formulation depends on an oriented surface

Σ, but not on its complex structure. Changing J should not affect the Hilbert space of a
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theory that has no right to “know” about it. We can therefore think of the spaces H(J)
Σ as the

fibers of a vector bundle over the moduli spaceMΣ, whose points are the complex structures

J on Σ. Because the fibers are all the same, this bundle should admit a flat connection that

canonically identifies them. This allows us to write HΣ in place of H(J)
Σ , and we obtain a

map sending the surface Σ to its CS Hilbert space HΣ. These flat bundles on moduli space

were studied by Segal [24], who called the map Σ 7→ HΣ the modular functor.

4.2 Quantization with Sources

Inserting Wilson loops. We are now ready to do something of real, physical interest:

we shall describe the Hilbert space structure of CS theory in the presence of matter. Equiv-

alently, as we saw in §2.2, we can couple SCS to sources by considering the theory in the

presence of Wilson loops. This is illustrated by the Fig. 4, which suggests that the imprint

left by a Wilson loop on Σ is a set of static, nonabelian charges. In A0 = 0 gauge, the Gauß

law of CS theory in the presence of r such charges at points p1, ..., pr ∈ Σ becomes

k

4π
εijF a

ij =
r∑
s=1

δ(2)(x− ps)T as . (4.5)

Here the T as ∈ g are Lie algebra generators assigned to each charge. In the quantum theory,

these generators are to be considered in the appropriate representations Rs.

How not to quantize. The quantization of (4.5) seems like a daunting task. The näıve

approach, which is to quantize the Poisson brackets (4.2) and then impose the sourced Gauß

law at the quantum level, is even more impractical now than it was in the source-free case.

To impose the constraint at the classical level seems like the only way out, but even this

runs into immediate difficulties: for one thing, the connections defined by (4.5) are definitely

not flat. It is no longer obvious how to put a symplectic structure on the space of classical

solutions, and more generally the failure of flatness causes large swaths of our geometrical

machinery to collapse. Even more worryingly, the generators T a that appear in (4.5) do not

commute. The “connections” they define therefore cannot be ordinary principal connections,

but must instead be some bizarre noncommutative objects. These musings serve as a natural

starting point for noncommutative geometry and the theory of quantum groups [25], both

of which have natural formulations and solutions to the problem posed above. We will not

entertain this approach, however. Instead, we take a more cavalier perspective: observe that

the connections defined by (4.5) really are flat, except at the marked points p1, ..., pr, where

they have nonabelian delta-function “defects.” It stands to reason that once we learn how

to deal with these static charges, we might somehow modify or augment the moduli space

of flat connections to include their effects. For this, we need to take a slight detour.
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Borel–Weil–Bott. There is an astonishingly simple idea at the heart of physics: given any

classical system with symmetry group G, the corresponding quantum Hilbert space should

be a unitary irreducible representation R of G.9 In fact, the correspondence goes both ways:

every such R is the Hilbert space that quantizes some phase space whose symplectic form ωR
is invariant under G. Let us give a very rough sketch of how this works. The key insight, due

to Kirillov [26], is that all of the ingredients for the quantization can be found “natively” in

G. Let T be a maximal torus in G, and consider the quotient P = G/T . This space, called

a flag manifold, admits a symplectic structure ωR for each unitary irreducible representation

R of G. It can be checked that ωR is G-invariant, so P really is the phase space of our

classical system. We then proceed with Kähler quantization. First, we complexify G to

put a complex structure on P = G/T , which thereby becomes Kähler. Next, we consider

the prequantum line bundle L of P by choosing the unique one with c1(L) = [ωR
2π

]. And

finally, we take holomorphic sections of L to obtain the Hilbert space H. In this setting,

the Borel–Weil–Bott theorem guarantees [27] that H is actually isomorphic to R itself. And

conversely, every unitary irreducible representation R of G comes from quantizing G/T .

Quantization at last. Now we shall use the Borel–Weil–Bott mechanism to outmaneuver

the problems laid out above. The key is to think of the T as appearing in (4.5) as quantum

objects: not only do they not commute, but they should genuinely be regarded as operators

in the representations Rs attached to each marked point on Σ. To implement (4.5) classically,

we must “de-quantize” the T as , as follows. At each marked point, we place a copy of the flag

manifold G/T , and give it the symplectic structure ωRs corresponding to the representation

Rs that lives there. The Borel–Weil–Bott theorem allows us to view Rs as the Hilbert space

that quantizes the phase space (G/T, ωRs), so we can replace the quantum operator T as
with the unique phase-space function on G/T that maps to T as under quantization. (Recall

that quantization sends phase-space functions to quantum observables, and each T as —being

anti-hermitian—is exactly i times an observable.) This replacement renders the constraint

(4.5) completely classical; its effect is to augment the moduli space of flat connections by

several copies of G/T . More precisely, our new phase space M̃ consists of flat principal G-

connections on Σ that suffer a reduction of structure group to T at the marked points. (This

reduction implements the additional G-symmetry carried by the Wilson loops.) Finally, M̃
can be given a Kähler structure and quantized in exactly the same way as before.

4.3 Example: Genus Zero

The Riemann sphere. The discussion so far has been rather dense, so let us describe a

special case more concretely. We will take up the case where Σ has genus zero: it has the

topology of S2, potentially with marked points p1, ..., pr that can be thought of as punctures.

9Rotational invariance manifests spin via representations of SU(2) by the Pauli matrices; translational
invariance gives the familiar Hilbert space L2(Rn); Poincaré invariance yields the QFT Fock space; etc.
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By the Riemann uniformization theorem, (the unmarked) Σ has a unique complex structure,

which we adopt without question, in which it is biholomorphic to the Riemann sphere P1.

Let us first study the Hilbert space of pure CS theory on P1 without any Wilson loops. By

the hairy ball theorem (or by Poincaré–Hopf), the 2-sphere admits no nonwhere-vanishing

vector fields. This implies that there are no flat connections on P1, nor on any principal

G-bundle over it. Therefore the moduli space of flat connections in genus zero is empty. The

quantization is “trivial,” in the sense that the empty set is automatically Kähler, and any

line bundle over the empty set is also empty. To find the space of holomorphic sections, one

must consider mapsM = ∅ −→ ∅ = L. Now, it is a fact of elementary set theory that there

is a unique function from the empty set to any other set, so the empty line bundle actually

has a single section. This section is trivially holomorphic, so we find that the Hilbert space in

genus zero is one-dimensional and consists of a single physical state. In fact, this is precisely

the state whose Gaussian wave functional (2.27) we obtained in the U(1) theory.

Remarks on marking. When marked points are introduced, the analysis above breaks

down: this is because the r-punctured Riemann sphere allows flat connections for r ≥ 1,

or equivalently because the augmented moduli space M̃ is no longer empty. Näıvely, one

might try to obtain the Hilbert space of the theory by just tensoring together the Hilbert

spaces Rs of each source charge. But this tensor product flouts the conservation of charge,

which intuitively requires the “total charge” on Σ to be zero. One might think to force each

representation R to come paired with its conjugate R, as Fig. 4 might suggest. But this

condition is too strict: there may be other ways for all of the representations Rs to combine

to “cancel out” the charge. Thus we require only that the Rs must collectively couple to the

trivial representation. To that end, we expand the tensor product of the Rs as a direct sum

of all of the irreducibles of G, among them the trivial representation. This is called fusion:

r⊗
s=1

Rs =

( n⊕
i=1

1

)
⊕
(
· · ·
)
≡ H⊕

(
· · ·
)
. (4.6)

The subspace H = 1⊕n of fixed points of G is precisely the sector of ⊗rs=1Rs with “zero

charge,” and is the correct Hilbert space for the Riemann sphere with marked points.

One, two, three. Let us apply the formula above to explicitly compute the CS Hilbert

spaces of CS theory on the Riemann sphere with only a few marked points.

For one marked point with representation R, the decomposition above is just R = R. If

R is the trivial representation, then H = 1 is one-dimensional. If R 6= 1, then there is no

way to satisfy charge conservation, so the Hilbert space is zero-dimensional (i.e. trivial).

For two marked points with representations R1 and R2, the only way to satisfy charge

conservation is to require R2 = R1. That is, R1 ⊗ R2 contains one copy of 1 if R2 = R1, in

which case once again H = 1 is one-dimensional. And if R2 6= R1, then H is trivial.

For three marked points with representations Ri, Rj, and Rk, things are more interesting.
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The decomposition of Ri ⊗ Rj ⊗ Rk contains a number Nijk of 1s; this number gives the

dimension of the Hilbert space H = 1⊕Nijk of CS theory on the thrice-marked P1. A formula

for Nijk was given by Verlinde [28] and studied extensively by Moore and Seiberg [29, 30].

4.4 Outlook: Surgery and Sources

Gluing. In our discussion of canonical quantization, we left out the final step of gluing

together our results on different pieces of the original 3-manifold M . To get a flavor of how

this works, suppose that M can be split into two disjoint pieces, M1 and M2, by cutting

along an embedded 2-sphere. Both M1 and M2 have an S2 boundary, and therefore (in the

absence of Wilson loops) both have 1-dimensional CS Hilbert spacesH1 andH2 living at their

boundaries. The S2 boundaries have opposite orientations, so H1 and H2 are canonically

dual. Suitable boundary conditions can be chosen so that the path integral on M1 “prepares”

a state |ψ〉 ∈ H1, and similarly the path integral on M2 prepares |χ〉 ∈ H2. Since M is the

connected sum of M1 and M2, the partition function of CS theory on M is the inner product

Z(M) = 〈χ|ψ〉. Next, we carry out the same procedure on S3, which splits along its equator

into two disjoint 3-balls B1 and B2. We find that Z(S3) = 〈v′|v〉, where |v〉 ∈ H1 and

|v′〉 ∈ H2 are the states prepared by the CS path integrals on B1 and B2, respectively. But

now—and this is the crucial point—since H1 and H2 are 1-dimensional, |v〉 and |ψ〉 must be

scalar multiples of each other, and so must |v′〉 and |χ〉, in such a way that

〈χ|ψ〉 · 〈v′|v〉 = 〈χ|v〉 · 〈v′|ψ〉 ⇐⇒ Z(M)Z(S3) = Z(M1)Z(M2). (4.7)

This formula can be understood pictorially by Fig. 5, which shows that S3 can be taken

apart and used to “cap off” the boundaries that are generated when M is sliced open.

Figure 5: Disassembling M = M1#M2 along S2, using the caps of S3 to round off the pieces.

Surgery. One can generalize the preceding discussion to include Wilson loops; this enlarges

the Hilbert space dimensions and makes the linear algebra more involved—one meets skein

relations and so on—but the general story is much the same. A byproduct of this exercise is

that one learns how to explicitly compute expectation values of Wilson loops in S3. (This is a

charge we fell short of answering in §3.4.) With S3 expectation values in hand, one dreams of
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computing expectation values on other 3-manifolds M 6= S3. This is where surgery comes in:

upon specifying a knot γ in an arbitrary 3-manifold M , one can thicken γ into a tube T with

the topology of a solid torus, excise T from M , apply a cleverly chosen diffeomorphism to the

torus boundary ∂T = T 2, and then glue the pieces back together to obtain a new 3-manifold

M̃ . It is then a foundational result of 3-dimensional topology that every 3-manifold can be

obtained from any other by a finite number of surgeries on embedded knots. In particular,

if one pays close attention to what surgery does to the expectation values of Wilson loops in

S3, the aforementioned dream will be realized. This is precisely what Witten does.

In fact, the argument is nearly identical to the one above. When the solid torus T is

removed from M = S3, both T and the knot complement N = S3 \ T have boundaries that

harbor canonically dual Hilbert spaces HT 2 and H∂N = H∗T 2 . The path integrals on T and

N yield vectors |ψ〉 ∈ HT 2 and |χ〉 ∈ H∂N , respectively, and the diffeomorphism on the torus

boundary ∂T = T 2 induces a linear transformation K on HT 2 that sends |ψ〉 7→ K |ψ〉. The

path integral on the new manifold M̃ is therefore related to Z(M) = 〈χ|ψ〉 by the operator

K: Z(M̃) = 〈χ|K|ψ〉. Witten then describes the CS Hilbert space in genus one based on the

work of Verlinde [28], performs a modular transformation on T 2 to obtain S3 from S2 × S1

from surgery, and uses the genus-one Hilbert space to deduce the formula (3.32) for the CS

partition function on S3, after which the whole procedure is repeated with sources.

5 Tying Up Loose Ends

A unified view. In this review, we have tried to untangle some of the topology and geom-

etry lurking behind Chern–Simons theory. We began our journey in §2 with an invitation to

the U(1) theory, perhaps from the perspective of an experimentalist encountering its bizarre

physics for the first time. This phenomenological excursion through the abelian theory pre-

pared us for a more formal treatment of the nonabelian theory by path integrals (in §3) and

by canonical quantization (in §4). Along the way, we deliberately refrained from discussing

many aspects of the broader physical and mathematical world in which CS theory is situated.

Below, we will give one last overview of the narrow route we have taken through the theory;

we will then conclude by giving brief glimpses into several parts of that broader world.

5.1 Broad Recapitulation

The abelian theory. In §2, we discovered that CS theory is topological. Its simplest

physical observables are anyonic exchange phases that measure the winding of magnetic flux

lines attached to electric charges that roam the plane. We soon realized these phases as

expectation values of Wilson loops, which are most naturally treated using path integrals.

The pure CS path integral showed us that, in the presence of magnetic flux, the CS level k

must be quantized as an integer to preserve the gauge invariance of the quantum theory.

Meanwhile, the CS path integral with sources revealed that anyonic phases really cap-
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ture topological invariants—linking numbers—of the knots traced out by the Wilson loops

attached to the sources. After this, we treated the U(1) theory in the canonical formalism,

where we found that the Hamiltonian vanishes identically, and that the components of the

CS gauge field are canonically conjugate to each other. We solved the theory exactly in R2,

finding just a single physical state, discussed its finite-dimensional algebra of observables on

T 2, and concluded with several fun but important topological remarks.

Path integrals. After setting up the machinery of nonabelian gauge theory, we introduced

and quantized the nonabelian CS theory by examining the failure of its gauge invariance

under gauge transformations with nonzero winding number. We then attempted to evaluate

the pure CS path integral at weak coupling. The process yielded up a host of topological

invariants of the underlying 3-manifold M , but nevertheless seemed to depend on its metric.

We managed to remove this dependence, but at the cost of a counterterm that depends on

the framing of M . In the end, we found an explicit, topological formula for the partition

function of pure CS theory, together with a law describing its behavior under change of

framing. The path integral with Wilson loops met a similar topological fate: to cure the

divergences associated with the self-linking number of a Wilson loop, we had to choose a

framing for the knot. In close analogy to the source-free theory, we obtained a formula

describing the transformation of Wilson loop expectation values under change of framing.

Canonical quantization. To perform a canonical analysis of nonabelian CS theory, we

chopped a generic 3-manifold M into pieces that locally resemble Σ×R, with Σ a Riemann

surface. The classical phase space of CS theory on Σ is the moduli space of flat connections

on Σ, and to quantize it we developed the powerful technique of Kähler quantization. This

technique gave us a description of the pure CS Hilbert space as the space of holomorphic

sections of a certain line bundle over M. We also considered the inclusion of Wilson loops,

which pierce Σ and leave nonabelian charges on its surface at distinguished or marked points,

echoing the magnetic flux lines of the abelian theory. These loops initially seemed to present

unresolvable problems, even for the classical description of the theory. However, by appealing

to the Borel–Weil–Bott theorem and the philosophy of quantizing systems with symmetries,

we were able to account for the effects of nonabelian charges by tweaking our moduli space.

In the specific case where Σ is a surface of genus zero, much more concrete results were

available, including a complete description of the Hilbert space and its dimension.

5.2 Extensions and Connections

The Jones polynomial. One of the principal contributions of Witten’s seminal paper

[1] was to understand an important knot invariant called the Jones polynomial in terms of

Wilson loops in CS theory. To formulate some of his results, we begin by observing that

the quantity e2πi/k has been ubiquitous throughout this review. We give it the name q, and

we claim that it is the right variable (from the standpoint of knot theory) in which to write
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down our final results. For complex values of k, the variable q = e2πi/k is closely related to

the nome q = e2πiτ that appears in the theory of elliptic functions.

It is no accident that both elliptic functions and the Jones polynomial Vq exhibit special

properties when k = 1/τ , the inverse CS coupling, assumes integer values: this is precisely

when the results of quantum CS theory become available. Actually, this is really only correct

“at tree level,” as it were: the correct variable, for G = SU(N), is really q = exp
(

2πi
k+N

)
. In

terms of the nome, we can finally write down the expectation values of some Wilson loops

in the nonabelian CS theory. For example, a single unknotted Wilson loop W [©] in S3, in

the fundamental representation of SU(N), has vacuum expectation value

〈
W [©]

〉
=
qN/2 − q−N/2

q1/2 − q−1/2

N=2
// q1/2 + q−1/2 =

sin [2π/(k + 2)]

sin [π/(k + 2)]
. (5.1)

This expression gives the correct (trivial!) Jones polynomial of the unknot after substitution

into the famous skein relation, also derived by Witten using Hilbert space methods:

−qVq(©) +
(
q1/2 − q−1/2

)〈
W
〉

+ q−1Vq(©) = 0 =⇒ Vq(©) = 1. (5.2)

In fact, some elementary properties of the Jones polynomial were already apparent from

the discussion in §4.4. For instance, the factorization result (4.7) may be written

Z(M)

Z(S3)
=
Z(M1)

Z(S3)
· Z(M2)

Z(S3)
. (5.3)

When Wilson loops are included, the ratios that appear above become Jones polynomials;

the formula then expresses their multiplicative behavior under connected sums.

Relation to 2D CFT. Thus far, we have deliberately avoided discussing the deep con-

nections between CS theory and 2-dimensional conformal field theory. A full treatment of

these connections is beyond the scope of this review, but let us collect here a few suggestive

remarks. Our first hint comes from our path-integral calculation of the partition function of

pure CS theory in §3.2. The main difference between the results at leading order (3.10) and

at one loop (3.27), aside from an increase in complexity, is that the relative phases making

up the partition function are shifted, as if we had replaced k by k + c2(G)
2

:

exp
(
ikI[A(α)]

)
// exp

[
i

(
k +

c2(G)

2

)
I[A(α)]

]
. (5.4)

This is evocative of a similar phenomenon in 2D CFT, where many semiclassical results

become exact if the parameters in the approximate formulæ are shifted. In fact, when

G = SU(N), k is related to the central charge c of a certain 2D CFT by the formula

c = kd
k+N

, where d = dimG = N2 − 1. When the CS coupling is weak, we have k −→ ∞
and thus c −→ d. It is then no surprise (from the CFT standpoint) that many results
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of CS theory derived at large k, like the partition function’s framing transformation law

(3.28), have generalizations obtained by replacing d by c. A similar story plays out for the

framing transformation law (3.31) of Wilson loops; this time, the factor n2
a

2k
is replaced by

the conformal weight h of a certain primary field in the CFT. More generally, the concept

of framing in CS theory has a direct analog in the monodromies of the corresponding CFT.

Holographic duality. By now it should be clear that CS theory in 3 dimensions is inti-

mately related to conformal field theory in 2 dimensions. We have a great deal of evidence:

for one thing, the analogies described above are tantalizing in their own right. Further-

more, in §4 we caught a glimpse of how the Hilbert spaces and partition functions of CS

theory are obtained by slicing 3-manifolds along Riemann surfaces and paying careful at-

tention to the physics on these lower-dimensional boundaries. The constructions we met

there—moduli spaces of Riemann surfaces and of flat connections, holomorphic vector bun-

dles, monodromies, the fusion of representations—are all important ingredients in 2D CFT.

Among these, perhaps the most important is Segal’s modular functor [24]. In Segal’s original

formulation, a Riemann surface Σ defines the spacetime on which a 2D CFT lives; to this

spacetime is assigned the vector space HΣ of solutions to the conformal Ward identities for

descendants of the identity operator. Segal’s construction of this “space of conformal blocks”

is completely identical to our construction of the CS Hilbert space on Σ×R, and this firmly

establishes the equivalence of the CS and CFT theories. Indeed, it can be checked that

our results for the dimensions of CS Hilbert spaces with sources agree with the number of

conformal blocks in 2D CFT on the corresponding marked Riemann surfaces.

The picture whose vague outlines are now coming into view is that of a hologram: CS

theory on a 3-manifold M is equivalent, or dual, to a particular 2D CFT living on a Riemann

surface Σ that can be regarded as the “boundary” of M . (In our discussion of gluing

and surgery, this interpretation was imposed forcibly.) The corresponding CFT is called

the Wess–Zumino–Witten (WZW) model, and its action closely resembles the boundary

term (3.4) in the variation of the CS action. In this setting, the marked points where CS

Wilson lines pierce Σ represent operator insertions of primary fields in the WZW model that

transform in the representations attached to the Wilson lines. The CS–WZW correspondence

is an actual theorem, and can be viewed as a proto-example of the holographic principle.

3D gravity. One important element that keeps CS–WZW from being a real example of

holography is the absence of gravitational physics on the CS side of the correspondence.

Nevertheless, Witten showed [31] that 3-dimensional gravity is a Chern–Simons theory!

The Einstein field equations of general relativity in 2+1 dimensions do not admit gravita-

tional wave solutions. The theory has, therefore, no local propagating degrees of freedom; for

this reason, it is purely topological. The Einstein–Hilbert action that governs this theory has

a first-order formulation in terms of vielbein fields and spin connections, and Witten showed

that it can be recast as a CS action of the form (3.3). The “gauge fields” in 3D gravity take

values in the Lie algebra of the Poincaré group ISO(2, 1) or some other noncompact variant
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thereof, depending on the sign of the cosmological constant. (For de Sitter backgrounds,

the group is SO(3, 1); for anti-de Sitter, it is SO(2, 2).) Since the gauge group is no longer

compact, much of the theory of compact Lie groups is no longer applicable, and the theory

becomes more difficult to interpret. In spite of this difficulty, Witten argued [32] that 3D

gravity admits a well defined quantization, analogous to the quantization of CS theory that

we have seen here. This claim establishes the CS–WZW correspondence as a true incarna-

tion of the AdS3/CFT2 duality. Witten also argued that the theory is exactly solvable, both

classically and quantum-mechanically. Even so, much remains to be understood about this

duality and its implications for quantum gravity.
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